
A Unified Theory for a Traffic. Analysis in Product Networks 

Abstract: Instend of pi ovidliig separate sol111 ions 
for each indi\itlual iietrroi I,, a unified th to l j  is de\ii- 
atJe to  cober the study of <L clasb of netwoiks (',ute- 
s ~ i n  product graphs pioviile a cointlion frailiervol I, to 
investigate the perl'ornianc (1 of se\er,tl i i i d i ~ i d u , ~ I  nrt- 
riorks This paper addiesses conmiiiiitiication capabili- 
tit's of product netuorhs It presrnts [i uti1fic.d theory 
t c l  evaluate the traffic iriknsity and 1 lie satuiatioii level 
c d  product networks We have thcorr tically coinpuled 
tlie traffic intensitj and tile saturation Iwel khini- 
ples of product networlLs that haw been invest'gated 
are multidimeiisional iiieslies, iiiuI~idiinenslc,nal tori, 
arid 7'-ar3. n-cubc i i t ~ t w t d , ~  

1 Introduction 
liitercoriiiectiori iietwor ks (INS) Iitive a veiy Impor- 
twnt role in the pcrforrnance of paiallel iimacliiiies 
Ih t te r  INS can reduce seLeral parallel system draw- 
tlttclis such as the ci)imitIiiiiiicati(~ii time 111 thr. p<wt  
rlvcade several nc:tworli*, have been 1'1 oposed and stlid- 
ird [Hsul)3], [Latif;Y], [YOUSSO], [?'zeii90], and soine 
I ~ , i v e  been used i n  iieii iiiassively parallel processing 
s>stenis a5 i n  tlie CR1.5, Campus KSRl and Mds-  

p i r  [Ramn93], [ S u [ w 9 ~ ]  ljotiie I u h  hate Iiimprokt'd i he 
rlc ficiencies of tlie exist ink ones [I\ uiiia9'21 [E'oub!lO], 
[ I  zei1901, [Lati891 'llie. perforiiiaiitr o! I N s  is u s i i A j  

st uciied \tsiiig a large numl)er of iiit':~su~es l'iiesth ttit'a- 
siirt's include tht. degriJe. diameter average dist<iii.. e,  
prtitloiinig capabilaty enibedding esteiLclibility arid 
t i  affic analysis Diameter average tiistancr~ antl ti af- 
fit. are generally used i o  evaluatv the coinmunil-at ion 
c<ipability of INq 

111 this paper, th r  clahs of producls gralbhs [HarnO9], 
which will be called product  ne ihorks ,  I S  coiihidcrctl In 
[YOUSSO] I a unified the( 1ry Iias been tlwelopetl to alia- 
1) Le the topological 1)ropei.ties of product netwot k aii t l  

provide coriiinoii ioiitnig, c,mbedtliiig m d  p.iitit ioiiing 
algorithrns for t I i tw  iit~tworlts tIo\vcvw, t h e  tiaffic 
aimlysis of tliesc nctvvt i Its was not ccmsiderctl 
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In this pa.per, a unified theory for the traffic analysis 
of prodiict networks is presented. This will enable us 
to  provide the traffic analysis of individual networks 
and study tlieir communication capabilities. A com- 
munication model based on packet switching proto- 
col has been used to carry out the traffic analysis of 
product networks, under uniform traffic ifisumption. 
Intensive siiiiulations have been conducted to validate 
the proposed model for different workloa'd, different 
architectures, antl different network sizes. Other ]ilea- 
sures such as tlie average time delay, the average queue 
size, and the throughput are computed via  extensive 
simulations. 

This paper is organized as follows. The iiext sect ion 
overviews the product networks. A coniiiiuiiicat ion 
model and traffic intensity are described iii Section 3. 
Section 4 prese1it.s the coninmunication c,apabilities of 
product networks. In Section 5 Simulatioii results are 
presented and discussed. The last section concludes 
the paper arid gives fut,ure direc.tions. 

2 Product Networks Overview 

In this section product networks are defined. It also 
includes the topological properties as well :is a routing 
strategy for product, net,works [Yous~O]. 

Definitions: 
I11 grapli terminology, an interconiiectioii network is 

modeled by a graph where the iiodes repiesent pro- 
cessor elements and edges represent communicat ion 
links Therefore, product networks are interconi~ec- 
tion iietworks whose underlying topologieh are carte- 
sian product graphs. Thc Cartesian product graph of 
two graphs G1 = ( V I ,  E l )  and G2 = (V2, E z ) ,  denoted 
G = GI x Gz = GlGz = ( V , E ) ,  is a grapli where the 
set of nodes V = 1'1 x V, = {(xl,22) I 11 E Vi and 
2 2  E VZ) alld E = {((x1,xz),(y1,~2)) I ( J I  = YI ;tnd 
( ( ~ 2 ~ ~ 2 ) )  E E?) or (Q = ~2 and ( ( ~ 1 ~ ~ 1 ) )  E El)) In 
the rest of this paper, a node (z, y) in G, Gz will be 
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denoted 21x2 and the c-artlinality of the set of iiodes, 
L;, of a graph G, = ( K .  E t ) ,  will be denoted I 

A product network GlGx can be constructed by tak- 
iiig I V, I copies of C:1 and coiinectiiig every set of the 
t i  corresponding nodes of these col)ies in G ' Z  giapli 

The definition of product networhs can be gix- 
eralized to the produci GlG2 C;, G,, of 71 w t -  
works, Gl,G'2, , G , ,  ,G, ,  whttie each = 
( \ : ,E8)  for 1 5 7 5 71, where I' = V,Vz . V,, = 
( ~ 1 x 2  . . . z n  I X I  E  VI,^ E V2,. ,E,  E K )  and 
t l =  ( ( ~ 1 x 2  . . .  x,,y1y2 g,) I there exists an I such 
that (gal yz) E Ez and for every j  # I we have x, = y r }  
Tlie topological properties of prodiwt networks can be 
found in [YOUSSO] In this paper ihree popular net- 
works are used to  validate the proposed traffic analy- 
sis niodel: rnultidiniensional ineslies multidimensiorial 
torues, and r-ary n-cube Networks l 'he popular Iiy- 
percube network call bth ohtained frotii a rQ,l by wt- 
tiiig r = 2 .  Note tliat when r = 2 ive have ZI'~ Hen( e, 
a hypercube of dimension n is the 111 oduct f i ;  

I 

3 Traffic Analysis 

3.1 Coinmunication Model 
In order t,o compare t,he communication capabilities of 
product networks, a coinrnunicatio~i niodel is needed. 
Tiie proposed model is a time-slotl.ed packet switch- 
ing inodel where pa.cl;et> are of fixed size. I n  each t iiiie 
slot,, a processor can siniultaneously seird ant1 receivc. a 
packet. I t  can also generate a siiiglv packiit accorcliiig 
to a Bernoulli distri1,ution of pararnc4ei.y. That. is, p is 
the packet generation riite of every node. Destiiiation 
nodes of gei~erat~ed packets are selected uniformly ran- 
domly. Each node contains a single unliinited buffer 
to accommodate inconiing packets. The packets are 
F11 FO serviced. The links between processors are full 
duplex. If several packets are sent to tlie same pro- 
c(::;sor, then a conflict c~ccurs. In t8his case, we assiitiie 
that one of the packett,. is chosen r.tiiclonily t,o I ) t  I C -  

ceived and the others are deferred. 

3.2 Traffic Iiiteiisity 
The t r a f i c  zn t ensz t y  of a node I in a network I: = 
( V ,  E )  is defined to be the product of the load of'that 
node by the average sei vice time of a packet [Kle17tj]. 
SiiIce the service time is deternzinistic, a processor can 
seiid a packet a t  each time slot. Thus the average sr:r- 
vice time is assumed to be one. Therefort., the trafbc 
iniensity is reduced to the total l o a l l  of the nodc. 

The load of a node x is the total of i,he locall> gen- 
er;tted load, t l ip  load dihstinated to this node and tlie 

load that has to  transit through this node. Therefore, 
the load is defined as: 

where 

Procar = The average number of parkets 
generated by E per time unit 

Ptransit  = The average number of packets 
transiting x per time unit. 

Pde&,atio,r= The average number of packets 
destinated to x per time unit 

Note that pioca{ = p ,  where p is the packet genera- 
tion rate. Let pezlernal be equal to the suni of ptratlJit 

and pdeslination. This load depends on the total num- 
ber of paths used by the routing algorithin, denoted 
by t:, that  either end at  node x or have nr~de z as an 
intermediate node and the traffic sent by e;xh node to 
every other node. This traffic is equal to fi since 
each node equally sends its locally generatc~d traffic to 
every other node in the system (except to itself). The 
following proposition gives the value of perternal. 

Proposition 1 T h e  t o t a l  e x t e r n a l  load a node z can  
recezve f o r m  o t h e r  nodes  In flre s y s t e m  as: 

We define the quantity T," = $, called the ex te r -  
nal load f a c t o r  of node 2 in network G, and we write 
Pez ternar  

N G  
Pezterna l  = P . -  N -  l 'Tx  

Next the traffic intensity in product networks is pre- 
sented. 

4 Communication Capabilities 
of Product Networks 

Consider a product network G = G1G2 = ( V , E )  of 2 
networks G1 = (bi, E l )  and G2 = (V2, E2 ). The f'ol- 
lowing lemma gives the ext,ernal load factor in product 
networks. 

Leinma 1 L e t  x1 a n d  2 2  be t w o  n o d e s  211 C1 a n d  G2 
. respec t i ve l y ,  a n d  rf'and~;~ t hez r  corresponding ex-  
t e r n a l  load f a c t o r s .  T h e n  t h e  ex t e rna l  load f a c t o r  of 
n o d e  2 1 2 2  $11 G = GIG2 as: 
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Proof. From proposition 1, the external load fact.or 
of ~ 1 ~ 2  in G is 

bVhere N =I Vi I I Vz I i.e., the number of nodes 
in (31G2, 
anti tz;z2 is the total number of paths that eithet end 
at node zlzz or have node 2 1 x 2  as an intermediate 
norle. Furthermore, it can easily concluded that tz,122 
can be expressed as 

since we have I Vz 1 copieh of GI ; ~ i i c l  I VI I copies of 
G2 Therefore, 

h corollary of this 1t:mrna for tlit: product of n 
graphs is that : 

1 = 7 1  

Tzi:' =z TE '  

d=I 

Tlieorem 1 The tr(ijFc znteiiszty of o node  21z2 z i i  a 
n e l w o r k  GlC2 zs def ined  as 

Proof. The proof follows from proposition 1 and 
lemma 1. H 

4.1 Traffic Intensity of Product Net- 
works 

To compute the traffic ilktensity of product networks, 
we first need to determine the exteriial load factor of 
their building blocks. 

Theorem 2 T l i e  e x t w n d  load f a c t o r  o f  a node  E au 
each  bualdaitg block 25: 

1 . - 1  
r 

T,". = - 
1 

P 
7,". = - [ ( p  - c)(2z + 1) - (1.3- I)] 

Tlie traffic intensity of each building block can be 
concluded from the theorem above arid theorem 1. 

The traffic intensity of three popular networks, 
namely, r-ary n-cube networks, multidimensional 
meshes, and multidimensional tori is computed in the 
next theorem. 

Theorem 3 T h e  Irafic i n i e n s i t y  o f  a n  r - u y  n-cube 
"Q,, = K: of  N = r" nodes, a m u l t i d z m e n s i o n a l  m e s h  
L 1  x L2 x . . . x L,, o f  N = p l  x p 2  x . . . x pn nodes ,  
a n d  a m u l t i d z m e n s i o n a l  torus Rplf$, . . . R{3,, of N = 
p l  x pa x . . . x p ,  nodes are:  

N r - 1  
P, ,  ... x, = P(1+--- (n, x --)) N - 1  

ProoJ The proof follows from theorem 1 and theo- 
rem 2. 

From the theorem above, we note that i n  the case 
of r-ary n-cube and torus the traffic intensity does not 
dependent on the node. This is because these networks 
are symmetric. While the traffic depends on the node 
in the case of a multidiniensional mesh. Throughout 
this paper we define the traffic intensity of a network 
to be the traffic inteiisity of a given itode if the network 
is symmet,ric, otherwise i t  is the traffic intensity of a 
node which handles most of the traffic. 

The traffic intensity of very popular networks such 
as the hypercube, the two dimensional meslt, and the 
two dimensional torus is computed in the iiext corol- 
lary. The t.raffic intensit,y of a hypercube can be ob- 
tained from that of a r-ary n-cube by ta,lting T = 2. 
In the case of a mesh and a torus, we consider a t8wo- 
dimensional network of size mn where m ;tnd n are 
both even. Since the mesh is not symmetric, we take 
the traffic intensity in the node E = 2 and 

Corollary 1 T h e  t r a f i c  an tens i t y  of a hyiiercvbe of 
h' nodes ,  a m e s h  of N = mn nodes ,  and  i i  torus of 
Ai = mn n o d e s  is: 

= 7. 

1 Pz1 ..z, = p ( l  + ___ 
N log, N 
2 ( N  - 1) 

N 
2( N - 1) PI1 .I, = P ( l +  ___. 
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N -- 1 2 
N + nz x (1 - -1))  X (  -- 

ni 

We would like to note that the traffic intensity of 
a hypercube is conform with the results obt.ained in  

[Bel192]. 

4.2 Communication Limits: Satura- 
tion Probability 

In this subsection wc~ ~ o u l d  like to know hot+ much 
tritffic a given network call handle befoie it beconies 
highly congested This will depend 011 the I N  stiiic- 
tu1 e,  the routing algorithn~, and the probabiht~ p of 
geiierating internal packets in the node So for a gi+cn 
net,work and a fixed rout lug stratcgy we woultl like 
to evaluate the piobability generdt ion rate at  which 
the, network is saturatc3d The iwtnork  is s a tu rn td  
rvlienever its traffic interrsity app1oac.Jie.s 1 The pacl,et 
generation rate p at which a nrtrvorh is sa turdrd  
urll be called the butuiutzoi i  prcjbiihtltly mcl dtbiioted 
p ,  Therefore. the scituiation prob4ll>i1ity of  a nebwoik 
dt fines a new iniportaiit Iierforniaiice factoi foi INS. 
F\ hen the packeat generation rate, pI approd ie s  p 3 ,  the 
nc twork becomes highly congested Howtvrr, wh~ii  p 
is greater than or q u a l  to y, the iietwolk is flooded 
aiid the queue sizes exi)locie Thus p tilust always be 
less than p ,  Furtlieimore, tlie higher pJ IS, the better 
tlie iietwork. The valur of p ,  foi , t  product nc.tworl; 
ci\n be derived froni tlic orcwi 1 

Corollary 2 The s a t u r a t i o n  probabi l i ty  of U i tode 

3’ 22 a n  a p r o d u c t  111 fuork  GIG:! i~ 

The following corollitry summarizes the saturation 
probabilities of a binary cube, i i  n t j i  mesh arid r r m  
torus. The size of the three networks I S  assiimed to be 
‘V . 

Corollary 3 T h e  saturutzon o j  t h e  hypercubes.  
itieshes a n d  t o r i  art 

1 
Ps = 

l+W 

I + z+q Y (e + In x (1 - 6)) 

1 + 4(N-i) x 

1 -________ Ps = 

1 
P3 = ------- N + T I ? )  

4.3 Optimal networks 
The performance of INS depends on several factors. 
One fact<or is the geometry (the structure) of the iiet- 
work [Krus87] Using our traffic analysis, we define the 
optimal network structure of a given product network. 
Here, the optimal structure should yield a high satura- 
tion probability. In this subsection, optinid structure 
for an r-ary n-cubes , an mn mesh and a mn torus is 
determined. This is carried out by differentiating the 
saturation probability equation of each ne1,work. 

Theorem 4 T h e  s a t u r a t z o n  probabzlzty of ail r -ary n- 
cube zncreases  wzth t h e  r a d i x  r T h e  maxzruuni  su tura -  
tzon probabzlzty for bo th  a m e s h  a n d  a torus of N = mn 
n o d e s ,  occurs  w h e n  in = n = n ( s q u a r e  i r e t w o r X s )  

In [Be1192], it was shown that the h r y  n-cube, 
which is also called a Cross-Cube network, outper- 
forms the regular hypercube. 

The  result of the mesh and torus is of iio surprise. 
We would like to note that the above results can also 
be obtained by considering other factors zuch as the 
diameter and average distance 

5 Simulation Results 
In order t o  validate the analysis presented i n  the previ- 
ous section, we conducted intensive simulations using 
hypercubes, meshes, and tori with a variety of work- 
loads. The simulator is based on the modcl presented 
in section 3. Several statistics are generated such as 
the average time delay or latency of a packet, the av- 
erage queue length, and the network throughput. 

Due to  limited space only the average tiine delay for 
32-node binary cube, mesh and torus, is given, Fig- 
ure 1. These networks become highly congested when 
the packet generation rate in each node reaches the 
saturation probability. ‘Therefore, the higiier the sat- 
uration probability is, the better the network. From 
Figure 1 we can also concluded that the saturation 
probability computed theoretically and through sirnu- 
lations coincide. 

The relationship of a mesh structure and its satiira- 
tion probability is illustrated is Figure 2. The Figure 
emphasizes that a square mesh always yields better 
performance. similar results can be derived for a torus 
network. 

6 Conclusion 
In this paper a unified theory for 
in product networks is presented. 

the traffic analysis 
This traffic analy- 
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sis is carried out under a time-slotted packet switch- 
ing communication model Based 011 this model, the 
tr;tffic intensity of product networks is computed We 
have also introduced a pel formanu factor called sat- 
uration probability which defines the comniuiiication 
liinits of a given netwoi k The satuidlioii piob~ibilrtg 
W,LS derived from thi,  tiaffic intensity of thc nrtnoik 
It presents the packet generation rate at which t h e  
nctwork becomes lrighly congested Simulations w i e  
conducted for hypercubes meshes and tori for dif- 
feient workloads We L onclnded tlrat thf. higher the 
saturation probability IS,  the better the network. \\’e 
have also shown that  the pvrformancc of a nelwoih (le- 
pends 011 its structure In the case of meshes anti tori, 
we have shown that a squaie network yields bettcr per- 
fcumance In tlie case of r-ary n-culw, a networl, with 
higher radix presents biAtter perfoiinaiice (‘ros+cube 
networks outperfoi n i  bitiai y cubrs 

Finally, future woilrs should evnliiate the comiiiuiii- 
cdtioii capabilities of product netkvoiks assuiniiig othci 
communication rnodtas 5uch as wortnhole ioutiiig and 
vit tual cut-through 
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Figure 1: Network size of 32 nodes 
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Figure 2: Mesh network with different structures 
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