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Abstract: Instead of providing separate solutions
for each individual network, a unified theory is desir-
able to cover the study of a class of networks. Carte-
sian product graphs provide a common framework to
investigate the performance of several individual net-
works. This paper addresses communication capabili-
ties of product networks. It presents a unified theory
to evaluate the traflic intensity and the saturation level
of product networks. We have theoretically computed
the traffic intensity and the saturation level. Exam-
ples of product networks that have been investigated
are multidimensional meshes, multidimensional tori,
and r-ary n-cube networks.

1 Introduction

Iterconnection networks (INs) have a very impor-
tant role in the performance of parallel machines.
Better INs can reduce several parallel system draw-
backs such as the communication time. In the past
decade several networks have been proposed and stud-
ied [Hsu93), [Lati89], [Yous90], [Tzen90], and some
have been used in new massively parallel processing
systems as in the CM5, Campus, KSR1 and Mas-
par [Rama93], [Supe91]. Some INs bave improved the
deficiencies of the existing ones [Kuma92]. [Yousi0],
[Tzen90], [Lati89]. The performance of INs is usually
studied using a large number of measures. These mea-
sures include the degree, diameter, average distance,
partitioning capability. embedding, extendibility and
traffic analysis. Diameter, average distance and traf-
fic are generally used to evaluate the communication
capability of INs.

In this paper, the class of producis graphs [Hara69],
which will be called product networks, is considered. In
[Yous90], a unified thecry has been developed to ana-
lyze the topological properties of product network and
provide comumon routing, embedding and partitioning
algorithms for these networks. However, the traffic
analysis of these networks was not considered.
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In this paper, a unified theory for the traffic analysis
of product networks is presented. This will enable us
to provide the traffic analysis of individual networks
and study their communication capabilities. A com-
munication model based on packet switching proto-
col has been used to carry out the traffic analysis of
product networks, under uniform traffic assumption.
Intensive simulations have been conducted to validate
the proposed model for different workload, different
architectures, and different network sizes. Other mea-
sures such as the average time delay, the average queue
size, and the throughput are computed via extensive
simulations.

This paper is organized as follows. The next section
overviews the product networks. A communication
model and traffic intensity are described in Section 3.
Section 4 presents the communication capabilities of
product networks. In Section 5 Simulation results are
presented and discussed. The last section concludes
the paper and gives future directions.

2 Product Networks Overview

In this section product networks are defined. It also
includes the topological properties as well as a routing
strategy for product networks [Yous90].

Definitions:

In graph terminology, an interconnection network is
modeled by a graph where the nodes represent pro-
cessor elements and edges represent communication
links. Therefore, product networks are interconnec-
tion networks whose underlying topologies are carte-
sian product graphs. The cartesian product graph of
two graphs Gy = (V1, E}) and Gy = (Va, £3), denoted
G =Gy x Gy = GGy = (V,E), is a grapl where the
set of nodes V = V) x V, = {(2y,22) | #, € V| and
zp € Vo} and E = {{(z1,22), (11,¥2)) | (z1 = y1 and
((z2,y2)) € E2) or (2 = y2 and ((z1,41)) € E1)}. In
the rest of this paper, a node (z,y) in GiG3 will be



denoted zyz, and the cardinality of the set of nodes,
Vi, of a graph G; = (V;, E;), will be denoted | V; |.

A product network GG can be constructed by tak-
ing | Va | copies of (7; and connecting every set of the
V1 corresponding nodes of these copies in G, graph.

The definition of product networks can be gen-
eralized to the product G1G2...Gi...Gy of n net-
works, G1,Ga,...,Gi,..., Gy, where each G
(Vi,E;) for 1 < ¢ < n, where V = V\V,...V, =
{r12a...20 | &1 € Vi,zz € Va,...,2q € V,} and
E = {{z122... 20,192 .. yn) | there exists an z such
that {z;,y;) € E; and for every j # ¢ we have 2; = y; }.
The topological properties of product networks can be
found in [Yous90]. In this paper three popular net-
works are used to validate the proposed traffic analy-
sis model: multidimensional meshes, multidimensional
torues, and r-ary n-cube Networks The popular hy-
percube network can be obtained from a "(), by set-
ting » = 2. Note that when r = 2, we have Ky. Hence,
a hypercube of dimension n is the product K%.

3 Traffic Analysis

3.1 Communication Model

In order to compare the communication capabilities of
product networks, a communication model is needed.
The proposed model is a time-slotted packet switch-
ing model where packets are of fixed size. In each time
slot, a processor can simultaneously send and receive a
packet. It can also generate a single packet according
to a Bernoulli distribution of parameter p. That is, p is
the packet generation rate of every node. Destination
nodes of generated packets are selected uniformly ran-
domly. Each node contains a single unlimited buffer
to accommodate incoming packets. The packets are
FIFO serviced. The links between processors are full
duplex. If several packets are sent to the same pro-
cessor, then a conflict ccecurs. In this case, we assume
that one of the packets 1s chosen randomly to be re-
ceived and the others are deferred.

3.2 Traffic Intensity

The traffic intensity of a node z in a network G
(V. E) is defined to be the product of the load of that
node by the average service time of a packet [Klei76].
Since the service time is deterministic, a processor can
send a packet at each time slot. Thus the average ser-
vice time is assumed to be one. Therefore, the traffic
intensity is reduced to the total load of the node.
The load of a node z is the total of the locally gen-
erited load, the load destinated to this node and the

412

load that has to transit through this node. Therefore,
the load is defined as:

p(l’) = Plocal t Ptransit + Pdestination

where

Plocal = The average number of packets
generated by & per time unit.

Piransit = The average number of packets

transiting  per time unit.
Pdestination= The average number of packets
destinated to z per time unit

Note that piocai = p, where p is the packet genera-
tion rate. Let pegrernat be equal to the sunt of prransit
and pgestination- This load depends on the total num-
ber of paths used by the routing algorithin, denoted
by t&, that either end at node x or have node z as an
intermediate node and the traffic sent by each node to
every other node. This traffic is equal to 3% since
each node equally sends its locally generated traffic to
every other node in the system (except to itself). The
following proposition gives the value of peyternai-

Proposition 1 The total ezternal load a node & can
receive form other nodes in the system is:

P ¢
rierna - r t
Pext 1 N_1*
G
We define the quantity 7¢ = %,—, called the ezter-

nal load factor of node z in network G, and we write
Pezternal *

N ¢

Pexternal = P- ﬁ T

Next the traffic intensity in product networks is pre-
sented.

4 Communication Capabilities
of Product Networks

Consider a product network G = GGy = (V, E) of 2
networks G; = (Vi, E1) and Gy = (Va, E3). The fol-
lowing lemma gives the external load factor in product
networks.

Lemma 1 Let 2, and x5 be two nodes in G; and G,
, respectively, and 7'lc'v’and-rz,c"2 their corresponding ez-
ternal load factors. Then the external load factor of
node 2129 in G = G1G4 1s:

rG1G2 —

G, Gy
2172 Tl'l + Ty2



Proof. From proposition 1, the external load factor
of z1z9 in G is

tG 1Ga
G1G, __ ‘z1T2
Tavl:rg - N
Where N =| V| | .| Va | . Le., the number of nodes
in (;le,

and tf;f; is the total number of paths that either end
at node z;z5 or have node z,27 as an intermediate
node. Furthermore, it can easily concluded that t$1¢2
can be expressed as:

tG 1Gz
T1T2

=18 | Vo | +(E2 | Vi |

since we have | Vo | copies of Gy and | Vi | copies of

Gy Therefore,

g g Va2 |V |
[Vil.]Va| Vil |Val
tfll tg: G G
= =17t 4T
|V1|+|V2i E z2

[
A corollary of this lemma for the product of n
graphs is that :
i= n

Gu = N7 4G

3:

G1Ga..
T1%2..Tn
i=]

Theorem 1 The traffic intensity of a node 2, n a
network G1G4 1s defined as

Pryx, = P(l + e (7"Jl +T )
Proof. The proof follows from proposition 1 and
lemma 1. .

4.1 Traffic Intensity of Product Net-

works

To compute the traffic intensity of product networks,
we first need to determine the external load factor of
their building blocks.

Theorem 2 The external load factor of a node x in
each building block 1s:

I 1
by = gw_mu+n—u+m
L

413

The traffic intensity of each building block can be
concluded from the theorem above and theorem 1.

The traffic intensity of three popular networks,
namely, r-ary n-cube networks, multidimensional
meshes, and multidimensional tori is computed in the
next theorem.

Theorem 3 The traffic inlensity of an r-ary n-cube

"Qn = K? of N = r" nodes, a multidimenstonal mesh
Ly xLox...x Ly of N=p; Xps X...Xp, nodes,
and @ multidimensional torus Ry R,, ... R, of N =
pP1 X pa X ... X p, nodes are:
r—1
Pry. .z, = P(l + — l(n X ” ))
1=n
Py zn _ 1(2 i
x[(pi — T».-)(?xi + 1) —(z.+ 1))
pz‘; Tn = 1 + —(Z -

() WU - 1)

Proof. The proof follows from theorem 1 and theo-
rem 2. n

From the theorem above, we note that in the case
of r-ary n-cube and torus the traffic intensity does not
dependent on the node. This is because these networks
are symmetric. While the traffic depends on the node
in the case of a multidimensional mesh. Throughout
this paper we define the traffic intensity of a network
to be the traffic intensity of a given node if the network
is symmetric, otherwise it is the traffic intensity of a
node which handles most of the traffic.

The traffic intensity of very popular networks such
as the hypercube, the two dimensional mesh, and the
two dimensional torus is computed in the next corol-
lary. The traffic intensity of a hypercube can be ob-
tained from that of a r-ary n-cube by taking r = 2.
In the case of a mesh and a torus, we consider a two-
dimensional network of size mn where m and n are
both even. Since the mesh is not symmetric, we take
the traffic intensity in the node z = % and y = §.

Corollary 1 The traffic intensity of a hypercube of
N nodes, a mesh of N = mn nodes, and « lorus of
N = mn nodes is:

_ Nlogy N

pern = P 5 Ty)
N

Pri.z, = P+ m



x(%{—l%—mx(i*%)))
N N
N T

We would like to note that the traffic intensity of
a hypercube is conform with the results obtained in
(Bell92].

4.2 Communication Limits: Satura-

tion Probability

In this subsection we would like to know how much
traffic a given network can handle before it becones
highly congested. This will depend on the IN struc-
ture, the routing algorithm, and the probability p of
generating internal packets in the node. So for a given
network and a fixed routing strategy we would like
to evaluate the probability generation rate at which
the network is saturated. The network 1s saturated
whienever its traffic intensity approaches 1. The packet
generation rate p at which a network is saturated
will be called the saturation probabdily and denoted
p.. Therefore, the saturation probability of a network
defines a new important performance factor for INs.
When the packet generation rate, p, approaches py, the
network becomes highly congested. However, when p
is greater than or equal to p, the network is flooded
and the queue sizes explode. Thus, p must always be
less than p,. Furthermore, the higher p, is, the better
the network. The value of p, for a product network
can be derived from theorem 1.

Corollary 2 The saturation probability of a node
29 i a product network G1Gy 1s:
1
' G G
1+ F@T X (Tﬁl + Tr;!?)

ps(2122) =

The following corollary summarizes the saturation
probabilities of a binary cube, a mn mesh and mn
torus. The size of the three networks is assumed to be
N.

Corollary 3 The saiuration of the hypercubes,
meshes and tori are:
1
ps = Niog, N
I+ 5055
1
b = 7 N F=1 {mx (1- %))
+ v X (G +m N
1
Ps =

1+ 4(1\5‘/;1) X (T—Nn-+7n)
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4.3 Optimal networks

The performance of INs depends on several factors.
One factor is the geometry (the structure) of the net-
work [Krus87]. Using our traffic analysis, we define the
optimal network structure of a given product network.
Here, the optimal structure should yield a high satura-
tion probability. In this subsection, optimal structure
for an r-ary n-cubes , an mn mesh and a mn torus is
determined. This is carried out by differentiating the
saturation probability equation of each network.

Theorem 4 The saturation probability of an r-ary n-
cube increases with the radiz r. The mazimum satura-
tion probability for both a mesh and a torus of N = mn
nodes, occurs when m = n = \/]V(square retworks).

In [Bell92], it was shown that the 4-ary n-cube,
which is also called a Cross-Cube network, outper-
forms the regular hypercube.

The result of the mesh and torus is of no surprise.
We would like to note that the above results can also
be obtained by considering other factors such as the
diameter and average distance.

5 Simulation Results

In order to validate the analysis presented in the previ-
ous section, we conducted intensive simulations using
hypercubes, meshes, and tori with a variety of work-
loads. The simulator is based on the model presented
in section 3. Several statistics are generated such as
the average time delay or latency of a packet, the av-
erage queue length, and the network throughput.

Due to limited space only the average time delay for
32-node binary cube, mesh and torus, is given, Fig-
ure 1. These networks become highly congested when
the packet generation rate in each node reaches the
saturation probability. Therefore, the higher the sat-
uration probability is, the better the network. From
Figure 1 we can also concluded that the saturation
probability computed theoretically and through simu-
lations coincide.

The relationship of a mesh structure and its satura-
tion probability is illustrated is Figure 2. The Figure
emphasizes that a square mesh always yields better
performance. similar results can be derived for a torus
network.

6 Conclusion

In this paper a unified theory for the traffic analysis
in product networks is presented. This traffic analy-



sis is carried out under a time-slotted packet switch-
ing communication model. Based on this model, the
traffic intensity of product networks is computed. We
have also introduced a performance factor called sat-
uration probability which defines the communication
limits of a given network. The saturation probability
was derived from the traffic intensity of the network.
It presents the packet generation rate at which the
network becomes highly congested. Simulations were
conducted for hypercubes. meshes, and tori for dif-
ferent workloads. We concluded that the higher the
saturation probability is, the better the network. We
have also shown that the performance of a network de-
pends on its structure. In the case of meshes and tori,
we have shown that a square network yields better per-
formance. In the case of r-ary n-cube, a network with
higher radix presents better performance. Cross-cube
networks outperform binary cubes.

Finally, future works should evaluate the commuii-
catlon capabilities of product networks assuming other
communication modes such as wormhole routing and
virtual cut-through.
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Figure 1: Network size of 32 nodes
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Figure 2: Mesh network with different structures



